Automatic defect detection for 3D printing processes, which shares many characteristics with change detection problems, is a vital step for quality control of 3D printed products. However, there are some critical challenges in the current state of practice. First, existing methods for computer vision-based process monitoring typically work well only under specific camera viewpoints and lighting situations, requiring expensive pre-processing, alignment, and camera setups. Second, many defect detection techniques are specific to pre-defined defect patterns and/or print schematics. In this work, we approach the automatic defect detection problem differently using a novel Semi-Siamese deep learning model that directly compares a reference schematic of the desired print and a camera image of the achieved print. The model then solves an image segmentation problem, identifying the locations of defects with respect to the reference frame. Unlike most change detection problems, our model is specially developed to handle images coming from different domains and is robust against perturbations in the imaging setup such as camera angle and illumination. Defect localization predictions were made in 2.75 seconds per layer using a standard MacBookPro, which is comparable to the typical tens of seconds or less for printing a single layer on an inkjet-based 3D printer, while achieving an F1-score of more than 0.9.
translated by 谷歌翻译
为了获得下游图像信号过程(ISP)的高质量的原始图像,在本文中,我们提出了一个有效的本地乘法变压器,称为ELMFORMER,用于原始图像恢复。 Elmformer包含两个核心设计,尤其是针对原始属性是单渠道的原始图像。第一个设计是双向融合投影(BFP)模块,我们考虑了原始图像的颜色特征和单渠道的空间结构。第二个是我们提出了一个本地乘法自我注意力(L-MSA)方案,以有效地从当地空间传递信息到相关部分。 Elmformer可以有效地减少计算消耗,并在原始图像恢复任务上表现良好。通过这两种核心设计,Elmformer提高了最高的性能,并且与最先进的机构相比,原始DeNoising和原始Deblurring基准测试最低。广泛的实验证明了Elmformer的优势和概括能力。在SIDD基准测试中,我们的方法比基于ISP的方法具有更好的降解性能,这些方法需要大量的额外的SRGB培训图像。这些代码在https://github.com/leonmakise/elmformer上发布。
translated by 谷歌翻译
由于对个人数据隐私的不断增长和当地客户的迅速增长的数据量,Federated Learnated(FL)的动机已成为新的机器学习设置。 FL系统由中央参数服务器和多个本地客户端组成。它将数据保留在本地客户端,并通过共享本地学到的模型参数来学习集中式模型。不需要共享本地数据,并且可以很好地保护隐私。然而,由于它是模型而不是共享的原始数据,因此系统可以暴露于恶意客户端发起的中毒模型攻击。此外,由于服务器上没有本地客户端数据,因此确定恶意客户端是一项挑战。此外,仍然可以使用上载模型估算客户本地数据,从而导致隐私披露。在这项工作中,我们首先提出了一个基于模型更新的联合平均算法,以防御拜占庭式攻击,例如加性噪声攻击和弹药攻击。提出了单个客户模型初始化方法,以通过隐藏各个本地机器学习模型来提供进一步的隐私保护。在结合这两个方案时,隐私和安全性都可以有效地增强。当没有攻击时,提出的方案被证明在非IID数据分布下实验会收敛。在拜占庭式攻击下,提议的方案的表现要比基于经典模型的FedAvg算法要好得多。
translated by 谷歌翻译
联合学习(FL)是一个有前途的分布式框架,用于协作人工智能模型培训,同时保护用户隐私。引起大量研究关注的引导组件是激励机制刺激佛罗里达用户协作的设计。大多数作品采用以经纪人为中心的方法来帮助中央运营商吸引参与者并进一步获得训练有素的模型。很少有作品认为参与者之间以参与者为中心的合作来追求其共同利益的FL模型,这会引起以经纪人FL的激励机制设计的显着差异。为了协调自私和异质参与者,我们提出了一个新颖的分析框架,以激励以参与者为中心的FL有效,有效的合作。具体而言,我们分别提出了两个新型游戏模型,用于贡献符合贡献的FL(COFL)和贡献感知的FL(CAFL),后者在其中实现了最低贡献阈值机制。我们进一步分析了COFL和CAFL游戏的NASH平衡的独特性和存在,并设计有效的算法以实现平衡溶液。广泛的绩效评估表明,COFL中存在自由骑行现象,通过采用CAFL模型具有优化的最低阈值,可以极大地缓解这种现象。
translated by 谷歌翻译
与自然语言解释的视觉结合旨在推断文本图像对之间的关​​系并生成句子以解释决策过程。先前的方法主要依靠预先训练的视觉模型来执行关系推断和语言模型来生成相应的解释。但是,预训练的视觉模型主要在文本和图像之间建立令牌级别的对齐,但忽略了短语(块)和视觉内容之间的高级语义对齐,这对于视觉推理至关重要。此外,仅基于编码的联合表示形式的解释生成器并未明确考虑关键的关系推理的决策点。因此,产生的解释不太忠于视觉语言推理。为了减轻这些问题,我们提出了一种统一的块意见对齐和基于词汇约束的方法,称为CALEC。它包含一个块感知的语义交互器(ARR。CSI),一个关系属性和词汇约束感知的发生器(arr。Lecg)。具体而言,CSI利用语言和各个图像区域固有的句子结构来构建块感知语义对齐。关系下属使用基于注意力的推理网络来合并令牌级别和块级视觉语言表示。 LECG利用词汇约束来将关系下列者重点关注的单词或块纳入解释世代,从而提高了解释的忠诚和信息性。我们在三个数据集上进行了广泛的实验,实验结果表明,CALEC在推理准确性和生成的解释的质量方面显着优于其他竞争者模型。
translated by 谷歌翻译
我们提出了联合隐式功能(UNIF),这是一种基于原始扫描和骨骼作为输入的人类重建和动画的零件方法。先前的基于部分的人重建方法依赖于SMPL的地面零件标签,因此仅限于最小衣服。相比之下,我们的方法学会了将部分与身体运动分开,而不是部分监督,因此可以扩展到穿衣服的人类和其他铰接的物体。我们的分区从动作进行分区是通过以骨骼为中心的初始化,骨限度损失和正常损失来实现的,即使训练姿势受到限制,也可以确保稳定的零件分裂。我们还为SDF提供了最小的周边损失,以抑制额外的表面和部分重叠。我们方法的另一个核心是一种相邻的部分接缝算法,该算法会产生非刚性变形,以维持显着缓解基于部分伪像的部分之间的连接。在该算法下,我们进一步提出了“竞争部分”,该方法通过点对骨骼而不是绝对位置的相对位置定义了重量,从而避免了神经隐式函数的概括性问题(线性混合皮肤)。我们通过在CAPE和ClothSeq数据集上穿衣服的人体重建和动画来证明我们方法的有效性。
translated by 谷歌翻译
最近,社区对模型缩放的关注越来越多,并有助于开发具有广泛尺度的模型家族。当前的方法要么简单地采用单发NAS的方式来构建非结构性和不可缩放的模型家族,要么依靠手动固定的缩放策略来扩展不必要的最佳基础模型。在本文中,我们桥接了两个组件,并将Scalenet提出到共同搜索基础模型和缩放策略,以便缩放大型模型可以具有更有希望的性能。具体来说,我们设计了一个超级植物,以体现具有不同尺寸频谱(例如拖鞋)的模型。然后,可以通过基于马尔可夫链的进化算法与基本模型进行交互学习缩放策略,并概括以开发更大的模型。为了获得一个体面的超级植物,我们设计了一种分层抽样策略,以增强其训练充足并减轻干扰。实验结果表明,我们的缩放网络在各种失败的方面都具有显着的性能优势,但搜索成本至少降低了2.53倍。代码可在https://github.com/luminolx/scalenet上找到。
translated by 谷歌翻译
积极学习对于许多实际应用,特别是在工业和物理科学方面具有很大的兴趣,在那里有很强的需要最小化培训预测模型所需的昂贵实验的数量。然而,在许多实际应用中采用主动学习方法存在重大挑战。一个重要的挑战是许多方法假设一个固定模型,其中选择了模型超参数先验。在实践中,很少确实是提前知道的好模型。使用模型选择的主动学习方法通​​常取决于中型标签预算。在这项工作中,我们专注于拥有非常小的标签预算的情况,大约几十个数据点的顺序,并利用模型选择开发了一种简单而快速的实际主动学习方法。我们的方法基于基于底层池的活动学习者,用于使用带有径向基函数内核的支持向量分类的二进制分类。首先,我们凭经验展示了我们的方法能够找到与在不太可分离的oracle模型中相比,我们的方法能够找到最佳性能,难以对数据集进行分类,并且在更可分离的数据集中的合理性能和更容易分类。然后,我们证明可以使用权重方法来改进我们的模型选择方法,在实现易于分类的数据集上实现最佳性能之间的权衡,而难以对数据集进行分类,可以基于先前域进行调整关于数据集的知识。
translated by 谷歌翻译
DataSet Shift在信用评分场景中很常见,并且培训数据分发与实际需要预测的数据之间的不一致可能导致模型性能不佳。但是,大多数当前研究都没有考虑到这一点,并且当培训模型时,它们直接在不同时间段中混合数据。这带来了大约两个问题。首先,存在数据泄漏的风险,即,使用未来的数据来预测过去。这可能导致离线验证的导致膨胀,但在实际应用中会导致不令人满意的结果。其次,在不同的时间段中,宏观经济环境和风险控制策略可能是不同的,借款人的行为模式也可能发生变化。具有过去数据培训的模型可能不适用于最近的阶段。因此,我们提出了一种基于对抗性验证的方法来缓解信用评分场景中的数据集转变问题。在该方法中,选择具有最接近预测数据的分布的部分训练设置样本用于通过对抗验证进行交叉验证,以确保训练模型对预测样本的泛化性能。另外,通过简单的拼接方法,与测试数据分发不一致的训练数据中的样本也也涉及交叉验证的培训过程,这充分利用了所有数据并进一步提高了模型性能。为了验证所提出的方法的有效性,通过贷款俱乐部提供的数据进行了具有若干其他数据分离方法的比较实验。实验结果表明,数据集转变在信用评分领域的重要性以及所提出的方法的优势。
translated by 谷歌翻译
了解来自第一人称观点的社交互动对于许多应用来说至关重要,从辅助机器人到AR / VR。谈论相互作用的第一步是理解人类的姿势和形状。但是,该领域的研究目前受到数据缺乏的阻碍。现有数据集根据大小,注释,地面真实捕获方式或相互作用的多样性有限。我们通过提出EGOBODY来解决这一缺点,这是一个用于复杂3D场景中的社交交互的新型大规模数据集。我们采用Microsoft Hololens2耳机来记录富裕的EGEntric数据流(包括RGB,深度,眼睛凝视,头部和手动跟踪)。为了获得准确的3D地面真理,我们将耳机用多kinect钻机校准并配合富有呈现的SMPL-X体网格到多视图RGB-D帧,重建3D人类姿势和相对于场景的形状。我们收集68个序列,跨越不同的社会学互动类别,并提出了从自我监视视图的3D全体姿态和形状估计的第一个基准。我们的数据集和代码将在https://sanweiliti.github.io/egobody/egobody.html中进行研究。
translated by 谷歌翻译